Intelligent and Robust Genetic Algorithm Based Classifier
Authors
Abstract:
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experimentally that the proposed IRGA-classifier has removed two important weak points of the conventional GA-classifiers. These problems are the large number of training points and the large number of iterations to achieve a comparable performance with the Bayes classifier, which is an optimal conventional classifier. Three examples have been chosen to compare the performance of designed IRGA-classifier to conventional GA-classifier and Bayes classifier. They are the Iris data classification, the Wine data classification, and radar targets classification from backscattered signals. The results show clearly a considerable improvement for the performance of IRGA-classifier compared with a conventional GA-classifier.
similar resources
Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
full textSolving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm
The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...
full textIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
full textA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
full textGenetic Algorithm-Based Optimization of SVM-Based Pedestrian Classifier
We developed a pedestrian classifier using GFB(Gabor Filter Bank)-based feature extraction and SVM(Support Vector Machine). Because the SVM uses RBF(Radial Basis Function) and is applied for nonseparable data, learning parameters should be optimized. This paper proposes GA(Ganetic Algorithm)-based optimization of SVM learning parameters.
full textNonlinear Classifier Design Research Based on SVM and Genetic Algorithm
This paper presents a support vector machine (SVM) model structure, the genetic algorithm parameters of the model portfolio optimization model, and used for non-linear pattern recognition, the method is not only effective for linear problems, nonlinear problems apply effective; the law simple and easy, better than the multi-segment linear classifier design methods and BP network algorithm retur...
full textMy Resources
Journal title
volume 1 issue 3
pages 1- 9
publication date 2005-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023